一、污水处理如何降低COD
1、物理法:是利用物理作用来分离废水中的悬浮物或乳浊物,可去除废水中的COD。常见的有格栅、筛滤、离心、澄清、过滤、隔油等方法。 2、化学法:是利用化学反应的作用来去除废水中的溶解物质或胶体物质,可去除废水中的COD。常见的有中和、沉淀
生物法主要是依靠微生物消耗污水中的**物降低COD,还有一些其他的工艺,比如说氧化还原,混凝絮凝,离子交换,膜法等等。
你的COD过高,你确定是由离子引起的吗?那你的COD检验过程有问题,COD检验过程如果离子太高应该选用试剂把他屏蔽掉, 《水质 化学需氧量的测定 重铬酸钾法》(GB11914-89)不适用于含化物浓度大于1000mg/L(稀释后)的废水,《高废水 化
如果原水cod高达三万多,因冲击负荷导致大量泡沫从厌氧池溢出,采取的处理方法有二个,一是根据污染负荷在现在厌氧池前增扩建厌氧池,同时也要在现有曝气后扩建曝气池,并配套相关设备,二是在不扩建工程的条件下,采用微生物发生器即可解决问题
解决方法: 1、去化验室做人工化验,确认COD是否真的不达标,有时是COD测验仪器设定有问题,需要厂家对仪器进行调整。 2、如果是真的不达标,需要添加多一点,不能只看水质是否清澈。 COD的简单介绍: 化学需氧量COD(Chemical Oxygen Deman
二、高浓度BOD COD污水处理一体化设备工艺介绍:
工业废水通过废水管线进入集水井,集水井的出口通过废水管线连接粗格栅,粗格栅的出口通过废水管线连接一次沉淀池,一次沉淀池的出口通过废水管线连接pH值调节池,pH值调节池的出口通过废水管线连接纳米微孔超声波间歇聚合反应槽,纳米微孔超声波间歇聚合反应槽的出口通过废水管线连接二次沉淀池,二次沉淀池的出口通过废水管线连接曝气硝化池,曝气硝化池的出口通过废水管线连接生物脱氮池,生物脱氮池的出口通过废水管线连接三次沉淀池,三次沉淀池的出口通过废水管线连接净水池,净水池的出口通过废水管线将经过本系统处理后的净化出水外排;其中,纳米微孔超声波间歇聚合反应槽的槽体采用高强度玻璃钢材质,其**板和底板上各并排装有8支超声波发生器,槽体中部设有上、下两道不锈钢网状龙骨,分别用于固定上、下两组纳米微孔表面聚合体,两组纳米微孔表面聚合体*安装了6支搅拌桨叶,槽体左侧设有进水阀门,右侧设有出水阀门;
经过酸化的工业废水通过纳米微孔超声波间歇聚合反应槽左侧的进水阀门进入反应槽内部,16支超声波发生器开始工作,发出超声波,废水中的**物在超声波协同化学效应的作用下,在纳米微孔表面聚合体的表面发生C-H键的短暂断裂,由于纳米微孔表面聚合体材料中添加有能够催化聚合反应进行的化烯丙基钯二聚物,在其催化聚合作用下,已经断裂的C-H键会迅速在纳米微孔表面聚合体的纳米孔隙处发生C-H键的再结合,从而在纳米微孔表面聚合体的表面发生聚合反应,超声波发生器开启一定时间后即停止工作,同时两组纳米微孔表面聚合体*的6支搅拌桨叶同时开始搅拌以产生液体湍流作用,这会使刚刚形成的**物聚合体的分子量不断增大,逐步汇聚成大颗粒的不溶物质并从纳米微孔表面聚合体表面脱落,以悬浮物的形式分散于废水中,并随废水通过反应槽右侧的出水阀门排出反应槽,进入二次沉淀池,并较终通过沉淀过程从废水中加以除去。
同时,纳米微孔超声波间歇聚合反应槽中的搅拌桨叶停止工作,超声波发生器重新开启,并通过进水阀门重新注入废水,开始新一轮催化聚合反应过程,如此往复循环;其中,pH值调节池的作用是将经过一次沉淀的废水pH值调节至1.5~3.0,以满足纳米微孔超声波间歇聚合反应槽的入水pH值要求;其中,曝气硝化池的作用是通过好氧曝气过程,使废水中的各种含氮物质均转化为硝酸盐氮;其中,生物脱氮池的作用是通过生物活性反应过程,将废水中的硝酸盐氮分解转化,从而去除硝酸盐氮。
三、高浓度BOD COD污水处理设备特点:
1、集处理BOD5、COD、NH3-N、粪大肠杆菌、PH于一身
2、整套设备可埋入地下、不占地表面积;
3、产生的嗓声低,异味少,对周围环境的影响小
4、净化程度高,整套系统污泥产生量少;
5、自动化程度高,管理方便,不需要专人管理;
6、技术稳定,维护方便
7、能耗低,节省运行成本